On Sets of Integers Containing No k Elements in Arithmetic Progression

نویسندگان

  • E. Szemerédi
  • E. SZEMERÉDI
چکیده

In 1926 van der Waerden [13] proved the following startling theorem : If the set of integers is arbitrarily partitioned into two classes then at least one class contains arbitrarily long arithmetic progressions. It is well known and obvious that neither class must contain an infinite arithmetic progression. In fact, it is easy to see that for any sequence an there is another sequence bn9 with bn > an9 which contains no arithmetic progression of three terms, but which intersects every infinite arithmetic progression. The finite form of van der Waerden's theorem goes as follows: For each positive integer n9 there exists a least integer f{n) with the property that if the integers from 1 to /(/?) are arbitrarily partitioned into two classes, then at least one class contains an arithmetic progression of « terms. (For a short proof, see the note of Graham and Rothschild [5].) However, the best upper bound on f{n) known at present is extremely poor. The best lower bound known, due to Berlekamp [3], asserts that/(«) < nl9 for n prime, which improves previous results of Erdös, Rado and W. Schmidt. More than 40 years ago, Erdös and Turân [4] considered the quantity rk{n)9 defined to be the greatest integer / for which there is a sequence of integers 0 < a\ < a2 < ••• < a; ^ n which does not contain an arithmetic progression of k terms. They were led to the investigation of rk{n) by several things. First of all the problem of estimating rk{n) is clearly interesting in itself. Secondly, rk{n) < n/2 would imply f{k) < 77, i.e., they hoped to improve the poor upper bound on f{k) by investigating rk{n). Finally, an old question in number theory asks if there are arbitrarily long arithmetic progressions of prime numbers. From rk{n) < %{rì) this would follow immediately. The hope was that this problem on primes could be attacked not by

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On rainbow 4-term arithmetic progressions

{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi&#039;{c} and Radoiv{c}i&#039;{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...

متن کامل

The Sum of the Reciprocals of a Set of Integers with No Arithmetic Progression of Á: Terms1

It is shown that for each integer k > 3, there exists a set Sk of positive integers containing no arithmetic progression of k terms, such that 2„6Si \/n > (1 e)k log A:, with a finite number of exceptional k for each real e > 0. This result is shown to be superior to that attainable with other sets in the literature, in particular Rankin's sets &(k), which have the highest known asymptotic dens...

متن کامل

Integer Sets Containing No Arithmetic Progressions

lfh and k are positive integers there exists N(h, k) such that whenever N ^ N(h, k), and the integers 1,2,...,N are divided into h subsets, at least one must contain an arithmetic progression of length k. This is the famous theorem of van der Waerden [10], dating from 1927. The proof of this uses multiple nested inductions, which result in extremely weak bounds for N{h,k). We shall define Bk to...

متن کامل

On sequences of positive integers containing no p terms in arithmetic progression

We use topological ideas to show that, assuming the conjecture of Erdös [4] on subsets of positive integers having no p terms in arithmetic progression (A. P.), there must exist a subset Mp of positive integers with no p terms in A. P. with the property that among all such subsets, Mp maximizes the sum of the reciprocals of its elements.

متن کامل

A Note on the Postage Stamp Problem

Let h, k be fixed positive integers, and let A be any set of positive integers. Let hA := {a1 + a2 + · · · + ar : ai ∈ A, r ≤ h} denote the set of all integers representable as a sum of no more than h elements of A, and let n(h, A) denote the largest integer n such that {1, 2, . . . , n} ⊆ hA. Let n(h, k) = maxA n(h, A), where the maximum is taken over all sets A with k elements. The purpose of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010